
then the conditions (2.8), de te rmin ing  the function k in (2.7), can be rep laced  by the conditions 

1 ~ ( l  2 , , )~ = ~ c o V ' ~  , co= ~ - -  y e ) a i j e i j - -  T d ( x l ~ ) / d t ,  

c = O ,  if ] ~  0 or f----0, o)~0; 
c ---- t, if ]----- 0, co> 0. 

F o r  the computat ion of smal l  i n c r e m e n t s  of  the s t r e s s e s  for  a smal l  in te rva l  of t ime  f r o m  the d e f o r m a -  
tion r a t e s ,  ins tead of Eqs.  (2.6)-(2.8), use can  be made of a p rocedure ,  p roposed  in [4], for  co r rec t ion  of the 
devia tor  of  the s t r e s s e s .  H e r e  the i n c r e m e n t s  of the s t r e s s e s  before  co r rec t ion  a r e  calculated using Eqs.  
(I.Ii) and (I.16). 

Using (1.12), (1.13), (1.15), and (2.6), for a medium with the condition (2.3), the equations of elastoplastic 
deformation can be formulated with a more general law of elastic deformation than in (2.6)-(2.8). 
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N O N I S O T H E R M A L  N O N L I N E A R  W A V E S  

I N  A R O D  M A D E  O F  A D I S S I P A T I V E  R U B B E R L I K E  

M A T E R I A L  

A .  I .  L e o n o v  UDC 532.5:532.135 

Art i c l e  [1] d i scussed  in the i s o t h e r m a l  approximat ion ,  a wave propagat ing  in an e l a s tov i scous  rod  and 
gave a numer i ca l  solution to the p r o b l e m  of the impac t  of a rod  of finite length on a r ig id  b a r r i e r .  With the 
p r e s e n c e  of s t rong g e o m e t r i c a l  and phys ica l  nonl inear i t ies  in the  de termining  equations,  waves  of v e r y  g r ea t  
in tens i ty  can be p ropaga ted  in the rods ,  where  the ef fec ts  of  noniso thermie i ty  a r e  cons iderable  with the p r o p -  
agat ton of- the waves .  The p r e s en t  a r t i c l e  is  devoted to an invest igat ion of these  ques t ions .  

1. B a s i c  E q u a t i o n s  

With the study of the mot ion of the rods ,  a s  in [1], we shall  use  a descr ip t ion  ave raged  over  the c ro s s  
sec t ion .  The m a t e r i a l  of the rod  is  a s s u m e d  to be i ncompres s ib l e  with the densi ty P0. 

The equations of  the  m a s s  balance,  momentum,  and ene rgy  in a Wrod approx imat ion"  have the fo rm 

~,f a 0 0 (/v'- - p~-'l ~) = 0. i 0 ~ ( / v ) = 0 '  ~ ( / v )  ! ~ 
(1 .I) 

{0o / ( g  + : ~  2)} -:~~ {,% f~ (u  + ~.'2} = ~ (/~ ~ - q) + ~ 1 7 ( r  - r0), 

where  f i s  the a r e a  of the t r a n s v e r s e  c r o s s  sect ion of the rod; v i s  the mean  veloci ty  over  the c ro s s  section;  
ff i s  the mean  no rma l  s t r e s s  ove r  the c ro s s  sect ion (de termined as in the homogeneous  case ,  using the condi- 
tion of the r e v e r s i o n  of the s t r e s s e s  to ze ro  at  the f ree  su r face  of the rod); U is  the spec i f ic  in te rna l  energy;  
q is  the longitudinal hea t  flux; T is  the mean t e m p e r a t u r e  over  the c ro s s  section of the rod; T O i s  the t e m p e r a -  
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l u r e  of the su::rounding medium;  ~ > 0 is  the coefficient  of l a t e ra l  heat  t r a n s f e r ;  x i s  the longitudinal coordinate;  
and t i s  the t ime .  

To close the s y s t e m  (1.1), equations descr ib ing  the t he rmodynamic  and rheological  behavior  of the 
med ium mus t  be formula ted .  

Let  the rod  cons i s t  of a d iss ipa t ive  rubber l ike  ma te r i a l  of the type of raw (unlinked) rubber  or  a po lymer  
mel t .  In this  case ,  i t  can be postula ted that  i t s  local ly equi l ibr ium t h e r m o d y n a m i c  s tate  i s  s im i l a r  to the 
s tate  of linked rubber .  We shal l  use  the concept of an "ideal  n i ncompres s ib l e  rubber  [2, 3], for  which, in the 
approx imat ion  under considera t ion ,  the spec i f i c  t he rmodynamic  potent ia ls  (the in te rna l  ene rgy  U, the entropy 
S, and the f ree  ene rgy  F) a r e  de te rmined  by the express ions  

U = Uo 4- c~.(l' - -  To), S = S O --  (,td/po)q'(k) + c~. In (T To), 
( 1 . 2 )  

F = Fo + (cx - -  So) (7  - -  To) - -  c , T  in  (T, To) + ( .~ 'T,Po)r  

where  ~. is  an "equi l ib r ium n t h e r m o d y n a m i e  p a r a m e t e r ,  de termining  the e las t i c  (highly elast ic)  deformat ion  
in the rod. In the case  of  homogeneous  monaxia l  deformat ion ,  the quantity X is  the ra t io  of the length of the 
sample  at  a given momen t  of t ime  to i t s  length a f t e r  ins tantaneous unloading. F r o m  this it  follows that,  for 
compres s ion ,  0 < ~ < 1; for  elongation, X > 1. tn (1.2), # t  is  a constant;  h e r e  # 'T  ~ E, where  E is  the Young 
modulus;  c X is the speci f ic  heat  capaci ty for  X = eonst,  which, ove r  a r a t he r  broad  in te rva l  of t e m p e r a t u r e s ,  
can be a s s u m e d  constant.  

The d imens ion les s  function r (X) in (1.2) i s  some e las t ic  potential .  In the ease of the potential  of the ne t -  
work theory  of high e l a s t i c i t y  [2] 

q:Q.) -= ;V-' + 2;*~ - t  - -  3,  ,u' = ( l , 2 ) p o X k ,  ( 1 . 3 )  

where  N is  the number  of effect ive  mo lecu l a r  chains in the network per  unit of volume;  k is  the Bottzmann 
constant. 

The potential (L3) describes rather well the mechanical properties of rubbers with not too great elonga- 
tions k < 2-3. For very large values of X, an empirical potential [4], describing well the mechanical properties 
of rubbers with large deformations, must be used: 

(1.4) 
~ 0 . )  = (2 ,,)(;.:, + 2~.-,~, ~ - 3)  -:- (~ ,,,,~) (~.,, + 2~,.-,,~ ~ - 3 p , ,  

where  n, b, and m a r e  pos i t ive  e m p i r i c a l  constants .  

The qual i ta t ive  dependences  of the potential  r (X) and i ts  f i r s t  th ree  der iva t ives ,  in accordance  with 
fo rmulas  (1.3) and (lo4) (dashed and so l id  l ines ,  r espec t ive ly ) ,  a r e  shown in Fig. 1, f r o m  which i t  can be seen 
that,  for  k - < X . ,  where  X.  is  a point of inflection o f t  '(X) for  the potential  (1.4), the c lass ica l  potential  
d e s c r i b e s  the r e s u l t s  of expe r imen t  with qual i ta t ive c o r r e c t n e s s .  

An inves t igat ion of the s i m p l e s t  equat ions of v i s c o e l a s t i c  media  in the p r e sence  of a r b i t r a r y  finite e las t ic  
de fo rmat ions  was made  by the methods  of nonequil ibr ium t h e r m o d y n a m i c s  in [5, 6]. In the case  of monaxial  
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e longa t ion -compres s ion ,  these equations, taking account of the specif ic  p rope r t i e s  of po lymer ic  e las toviscous 
media,  have the f o r m  

(~=C~o(~,, T)-~-~(~., T)~--~, q=-- :~(~. ,  T) OTTx ( •  (1.5) 

--~ ~7 + v ~ ~- 600 (T) = ~ '  (1.6) 

where  ~0(X, T) is  the "equi l ibr ium" s t r e s s ;  ~(X, T) is  the ~Kelvin" viscosi ty ,  r i s ing sharply with a r i se  in X 
(or X-t) and falling sharply with a r i s e  in T$ ~r is the coefficient  of thermal  conductivity. The second express ion  
in (1.6) is  the mkinematic r e s i s t ance , "  where  ~a(k)/[600(T)] is the ra te  of the i r r e v e r s i b l e  deformat ions .  Under 
these  c i rcumstances ,  a s  follows f rom [5, 6], 

~. aFI 
,~o(Z, T) = po ~ l r  = t~' TZr 

, a { -  ! ~ , ( ~ - ' ) l } ,  (P(~) -- -- fi- Z~X exp 7 [r (1.7) 

Oo(T ) = O' exp (AE/RT) ,  

where  00(T) is  the cha rac te r i s t i c  re laxat ion  t ime;  AE is the act ivat ion energy;  R is the gas constant; 0'  is a 
constant; and the quantity fl(0 < fl < 1) is a numer ica l  pa rame te r ,  taking account of the flexibility of the po lymer  
chains. 

F o r  the invest igat ion of waves of g rea t  intensity,  in the determining equations (1.5) and (1.6) and in the 
energyeclt lat ion [1.1] we shall omit  the v iscous  t e rm inthe  s t r e s s S a v / a x  and the t e rm  q =-~tOT/0x, descr ibing the 

longitudinal the rmal  conductivity, since outside of r a the r  nar row zones where  these quanti t ies  are  small ,  and 
zones where  these  quanti t ies a r e  ve ry  grea t ,  they will be replaced,  as in [1], by the sur faces  of strong and weak 
discontinuit ies.  

Thus,  in what follows, in (1.1) and (1.5) we shall a ssume that 

= Oo(~, r ) ,  ~(~, r )  ~- 0, q ~ 0 ,  ( 1 . S )  

which cor responds  to the nonlinear Maxwell rheological  equations, used in the i so thermal  case in [1]. 

F r o m  (1.1) we can obtain an equation for the balance of the specif ic  in ternal  energy U, which, taking 
account of the express ion  for  U f rom (1.2), has the fo rm of the t empera tu re  balance: 

poc~ {O(fT)/Ox -+" O(/vT)/Ox} = ~[Ov.'Ox --  al,rT(T -- To). (1.9) 

The f i r s t  t e r m  in the r ight-hand side of (1.9) i s  the power of the s t r e s s  in the total  deformat ion ra te  and, 
general ly  speaking, is not posi t ively determinable .  
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I f  along with (1.6) we use  the wel l -known fo rmula  (eft i s  the heat  capaci ty at constant  s t r e s s )  

a a;L I (1.10) 

we can obtain an e x p r e s s i o n  for  the en t ropy  balance (with the exception of c ro s s  sect ions  with s t rong  d iscon-  
t inui t ies) ,  which can a lso  be r e p r e s e n t e d  in the fo rm of the t e m p e r a t u r e  balance:  

9oe~(~.){O(/T)/Ot + O(fvT)'Ox} = ~i,~(~0/600(T) -- ~V-](T - -  To). (i.II) 

Under these c i r cu m s t ances ,  f r o m  (1.10), taking account  of (io7) and (1.8), we obtain 

c,~'cx = i --  %q:''/(t4"')' (I' = t.t'/Oocz). 

The f i r s t  t e r m  in the r ight -hand side of (1.11) r e p r e s e n t s  the d iss ipat ion and is  pos i t ively  determined.  
For  the p o l y m e r  m a t e r i a l s  under  considerat ion,  the value of y is  v e r y  smal l  ( y ~  10-z). 

We note a lso  that formula  (1o6) can be wri t ten in ~divergent" form:  

~;.-~ i~ ~0,) (i.12) 
ot cZ.. (v}'-~) 60o ~T)~ " 

The f o r m u l a s  of the p r e s e n t  and following sec t ions  as  00--*~o (fl ~ o )  descr ibe  the motion of i noompres s ib l e  
ideal ly e l a s t i c  rubber  in a rod approximat ion .  

2. W e a k  D i s c o n t i n u i t i e s  f o r  t h e  P r o p a g a t i o n  o f  W a v e s  

in  a n  E l a s t o v i s c o u s  R o d  

For  the closed s y s t e m  of equations (1.1), (1.2), (1.7), and (1.12), taking account of (1.8), the cha rac t e r i s t i c  
roo ts  have the f o r m  

~ =. ~,~..:. ~ .~ = ,o~_~ ~ a ,,~ ,, (2.1) 

where  u s and u T a r e ,  r e spec t ive ly ,  the adiabat ic  and i so the rma l  ve loc i t i e s  of sound in the deformed mate r ia l .  
H e r e  Us>U T i f k ~  1, and Us=UT=U0(T) for  k =1, i .e . ,  in the undeformed rod. H e r e  

u~ (1") -= 9o  ~ E(T),  E(T) = 3n t iT.  (2.2) 
/ \ 

As follows f r o m  (1.7), ~c~ ~ (~), r = tdT$"(X) ~ 0; th is  inequality follows f rom the condition of t h e r m o -  

dynamic insmbil i  W for  the potential  F and a s s u r e s  the hyperbol ic  cha rac t e r  of the s y s t e m  of equations under 
co ns idera t ion.  

F r o m  (1.7), (2.1), and (2.2) we have 

'~i ~.~ u~ ~2 Lt' (2.3) 
~,~ - ~ " ( ~ ' ) '  ~ : ~  :3,--; { < ' - ~ - v<2 } '  ~ -  90% 

The cb:arae ter i s t ic  roo ts  a k  for  the hyperbol ic  s y s t e m  co indde  with the r a t e s  of the propagat ion of a 
weak discontinuity x ' .  (t). Using, in addition to the s y s t e m  of equations under considerat ion,  the kinet ic  
conditions for  comparabi l i ty ,  we can obtain an equation interconnect ing the dynamic  quant i t ies  at a weak d i s -  
continuity x .  t: 

/,(,-,-A) ~* f d (f,%.T,) r,z,~(~.~:,~ ~ ~.~.~ ~ ~ ,  ( T , - -  To) 
d t  ~ 9 o T ,  a t  " " 69000 (T,) "- 9~c}. T ,  -'= O.  (2.4) 

where  11, = f i x ,  (t),t];  the other  quant i t ies  a r e  defined analogously.  In an i so the rma l  approximat ion ,  where  T ,  = 
T o = const,  f r om (2.4) i t  follows [1] that 

f,k.~i(~,)da, f ,  ( v ,  - x'~) d~,, . ~ d ( / , ~ , )  : = O. 
d t  i Po d t  69o00 d~, 

3.  S h o c k  W a v e s  i n  a n  E l a s t o v i s c o u s  R o d  

In the s y s t e m  of equations (1.1), (1.2), (1.7), and (I.12), taking account  of  (1.8), as  has  a l r eady  been noted 
for  the i s o t h e r m a l  approximat ion  in [1], s t rong discontinui t ies  can exis t  (this s y s t e m  r eca l l s  the equations of 
gasdynamics ,  where  the ro le  of the densi ty is  p layed by the a r e a  of the c ross  sect ion f). Under these c i r cu m-  
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s tances ,  the s t r u c t u r e  of the shock wave,  along with the zone of inhomogeneity of the s t r e s s e s  in the t r a n s -  
v e r s e  c r o s s  sect ion noted in [1], is  a lso  de te rmined  by the phenomena of longitudinal t h e r m a l  conductivity and 
the p r e s e n c e  of a v i scous  component  of the s t r e s s  in (1.5). 

Let  x0(t) be the line of a s t rong discontinuity in the plane x, t. We se lec t  the d i rec t ion of the x axis  so 
that  x '0>0.  We shall  denote by the subsc r ip t  1 all  quant i t ies  ahead of the shock wave ( x = x 0 - 0 )  and by the 
subsc r ip t  2 all  quant i t ies  behind the shock wave (x=x0+ 0). The conditions a t  the shock waves  for the above 
s y s t e m  of equations have  the f o r m  

[ h  - x ; ) l  = o po[s(~ - x; )  ~1 = [<, / ] ,  

i, .(o x 4 : o   o[h  ol:. 
where  the s tandard  notation i s  adopted for  the shock wave,  [y] =Yz - Yl" 

The f i r s t  equali ty in (3.1) co r r e sponds  to the conserva t ion  of the flow of m a s s  with a p a s s a g e  through 
the shock wave,  the second to conserva t ion  of the flow of momentum,  the third to the conserva t ion  of the flow 
of e l a s t i c  deformat ion ,  and the fourth to the conserva t ion  of the ene rgy  flux. 

We note that ,  in a fixed s y s t e m  of coordina tes ,  the flow of m a s s  j < 0. Since fi > 0, i t  follows f rom this 
that  

]/ i  - i  =v~ --  x0 < 0 (~ = l, 2). 

F r o m  (3.1) the  following re la t ionsh ips  can be obtained: 

h ~  =/~Z~.; 
x2 

2 ' [ale'] ( i =  I, 2) ;  
( x 0 -  v~) = pc [zl 

po[U ] = p0c~ iT] = (1/2)[Z](a~/~h + ~2/Zz) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Rela t ionship  (3.3) shows that  the p a s s a g e  through the shock wave is  accompanied  by pure ly  e las t ic  de-  
fo rmat ion .  

F r o m  (3.4), us ing (3.2), we have 

�9 ] / [ c , / / . ]  ( 3 . 6 )  [v] - - [ ) d  r m - ~ "  

He re ,  f r o m  (3.4) and (3.6) t h e r e  follows the a l t e rna t ive  

[a /Z]<  O,,  [~,]< O, [ v ] >  O; (3.7) 

[o-/Z] > O, [Z] > O, [ v ] <  O. (3.8) 

The inequal i t ies  (3.7), usual  for  gasdynamics ,  cha rac t e r i ze  compres s ion  shock waves  and a r e  sa t i s f ied  
for the rubber l ike  m a t e r i a l s  under  considera t ion ,  as  will be shown below, in the region of compres s ion  (~< 1) 
and mode ra t e  d e g r e e s  of elongation. In the region of v e r y  la rge  elongations (X>>l), for  rubber l ike  m a t e r i a l s  
the inequal i t ies  (3.8) may  obtain, cha rac te r i z ing  elongation waves .  

F r o m  (3.5), taking account  of  the f i r s t  equali ty of (1.7), i t  follows that  

,~ _L ~'[~,]',b~ T2 " ' ( 3 . 9 )  
r ,  2 -  ~,[Xl,'_o' 

and we a lso  have  the Hugoniot re la t ionship ,  

x e~, (2 - -  "7 IX]*,'_>) = ~ (2 "- "7 iX] q:;). 
_ X~r 

H e r e  and in what follows ,(~) : (d"~dZ")~.=~.i (i ::: 1, 2). 

Using (1.2) and (3.9), we obtain an express ion  for  the discontinuity of the ent ropy [Sl at the shock wave: 

t s l  = l , , / 2  - ~' f x l , ;  i - v t , l  (3.1o) 
~-Z,. t 2 - ~" I ~  *:' i 

F o r m u l a s  (3.9) and (3.10) show that  for  the dependences r given in Fig. 1, the poss ib le  region of the 
ex is tence  of shock waves  has  finite boundaries:  0< k_< X< X+, where  X_ or X+ depend on the p a r a m e t e r  X t 
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(or X 2) ahead of (or behind) the shock wave. As X--*;% • where express ions  (3.9) and (3.10) become unbounded, 
the postulation that  the heat  capacity c x is  constant becomes untrue,  and for the thermodynamic potentials in 
(1.2) the re  is  a more  complex dependence on the t empera tu re .  

For  shock waves of  smal!  intensi ty,  f rom (3.10) we have 

[ s I ~' , . . . .  

As a resu l t  of the dissipat ive cha rac te r  of the shock waves,  iS] > 0. As follows f rom Fig. 1, for X 1< 
X . ,  we have r ~"l< 0. Then (in view of the smal lness  of y), waves of small  intensi ty  can be shock waves for 
;%1< X.  only i f  iX]< 0 (compress ion  waves).  F o r  X l>X .  we have ~ l > 0 ,  and waves of small  intensity can be 
shock waves only for [k] > 0. 

The resu l t s  of an analysis  of the behavior  of iS] with a r b i t r a r y  values  of iX] as a function of X l and X z 
a r e  shown q ~ l i t a t i v e l y  in Fig. 2 for the rea l  potential  r (X) shown in Fig. I by the continuous lines. We 
consider  two cases  separa te ly .  

In the f i r s t  case,  where loading waves a re  being considered,  i t  is convenient to study the dependence of 
iS] on ~ for  fixed va lues  of h l (Fig. 2a-c).  

In the second case,  where  unloading waves a re  being studied, it  is convenient to study the dependence of 
iS] on t 1 for fixed values  o f t  z (Fig. 2 a ' - c 9 .  

Here ,  for  the plots  of Fig. 2, use was made of the an t i symmet ry  of the function iS] = g(;~ i, X 2), i .e . ,  
g(X2, X 1 )= -g (k l ,  ;%2), which follows d i rec t ly  f rom (3.10). 

In addition to the physical  condition for the exis tence  of shock waves,  iS] > 0, in the situation under con- 
s iderat ion,  where  r changes sign, the quest ion of the i r  stabili ty must still be examined [7, 8]. 

The ~'~ock wave will be stable i f  the following inequali t ies a re  simultaneously satisfied: 

Us~ < x'o < l~s,, (3. ii) 

since only in this case will small perturbations behind the shock wave overtake it and s~pply energy to it, 
while small perturbations ahead of the shock wave, moving more slowly than it, cannot take energy away from 
the shock wave. 

From formulas (2.1)-(2.3) and (3~4), the following relationships can be obtained: 

(xo__ul)~ (Us __u,),,=__~21uo(T1)2-~YI%]*I 0 S 
8n ~,% [Z] ~-f~ [ ]' (3.12) 

hold: 
F r o m  (3.12) i t  follows that the conditions for stabili ty (3.11) will be satisfied if the following relat ionships 

sgn ( ~  [S] /=  sgn [~], sgn ( ~  iS,} = --sgn[~l  (3.13) 

Let  us now examine the quest ion of the exis tence and stabil i ty of loading and unloading shock waves, 
propagat ing along rods  made of a rubber l ike  mater ia l .  

The dependence of iS] on X 2 for  At< ~ .  and for the rea l  potential  r is i l lus t ra ted  qualitatively in 
Fig. 2a and the dependence of iS] on ;~1 for ;%2< ;%. in Fig. 2a'.  Here  X,  is  a point of inflection on the depend- 
ence r  (see Fig. 1). 

As can be seen f rom Fig. 2a, loading shock waves exis t  in this case ([S]>0) for ~2< A z [compress ion 
shockwaves ,  fo r  which the inequali t ies  (3o7) are  sat isf ied] ,  and exis t  also for  X 2 > X ~ > l 1 [elongation shock waves, 
for  which the inequal i t ies  (3.8) are  satisfied].  As follows f rom (3.13), both of these types of shock waves a re  
stable.  In the in terva l  ~ t<-;%2~h ~ the re  exis t  only weak i sen t rop ic  loading waves. 

F r o m  Fig.  Za' i t  can be seen that unloading waves exis t  only in the region Xz< X 1< ~0. However ,  for 
X2< ;~ 1< 1 m [where 1 m is the point of the maximum [S](~2)I~.2= const], as follows f rom (3.13), they a re  stable,  
and, for ;% m < X l< X ~ they a r e  unstable.  Thus,  unloading shock waves actually exist  only in the interval  
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~tZ < ~tl 5 A.m. Outside this  interval ,  t he re  ex is t  onlyweak i sen t ropic  unloading waves.  Stable shock waves and 
weak loading and unloading waves a re  shown in Fig. 2 by the heavy lines.  

Only stable loading shock waves exis t  for  X l = ; t ~  (see Fig. 2b). Here ,  i f ; t2<  ;t l ,  these a re  com-  
press ion  waves with sat isfact ion of the inequali t ies  (3.7); i f  ;t2 >;t 2, they a re  elongation shock waves with the 
satisfaction of inequali t ies (3.8). Only weak i sen t rop ic  unloading waves exist  for X 2 = X ~ X  , (see Fig. 2b'). 

The dependence of [S] on ;ta for  a fixed value of XI>X , is  shown in Fig. 2c. Stable loading shock waves 
exis t  for  ;t 2 < ;t ~ [compress ion  shock waves with the satisfaction of inequali t ies (3.7)] and for ;t 2 > ~ 1 [elongation 
shock waves with sat isfaction of the inequal i t ies  (3.8)]. In the in terva l  ;to< X2 < ; t l  there  exist  only weak 
i sen t ropic  loading waves.  

Shock unloading waves for ; t2>; t .  exist ,  as  is  shown in Fig. 2c' ,  in the in terval  X~ ; t l< ;tz" However,  
they a re  stable,  a s  follows f rom (3.13), only in the in terva l  ; tm < X 2< ;t ~, where  X m is a maximum on the 
dependence [S] (X1)l;tz= const" Outside this  in terva l  there  exis t  only weak i sen t ropic  unloading waves. 

Dissipat ive phenomena (relaxation,  heat t ransfer)  can lead to a case where the si tuations i l lus t ra ted  in 
Fig. 2 will va ry  with the t ime; in par t i cu la r ,  one situation may replace  another .  In a hea t - insula ted  rod, to 
which energy  is  applied only for  the course  of a finite in terval  of t ime whidl is v e ry  smal l  in compar i son  with 
the t ime of the ex is tence  of the wave, these changes a re  d i rec ted  toward the side of a dec rease  in the intensi ty 
of  the waves.  

4 .  E x a m p l e s  

We f i r s t  consider  loading waves,  propagating over  a homogeneous unloaded rod having a t em p e ra tu r e  

T 1 = T 0. 

In the given case,  l 1 = 1, fl = const, ~ 1 = 0, T 1 = To, and, without l imiting the genera l i ty ,  we can assume 
that  v 1 = 0. This  si tuation is obviously i l lus t ra ted  in Fig. 2a. 

F r o m  Fig. 2a it follows that ,  for  X 2 < 1 (l  1 = 1), the re  exis t  compress ion  shock waves.  Under these 
c i r cumstances ,  f rom (3.3)-(3.5) we have 

~ = / ~ . ~ " ,  r . ,  r o  = {~ - (~:2) (;.~ - ~) ,1.~}, -~  
(4.1) 

x0 = u0 (To) ($~)I/e {3nX~ (~. --  t ) ( l  -? (7/2)(t --  Z2) ~)}-V,, u 2 = x'c (i --  Z~). 

Since X2< 1, then r 0, and f rom (4.1) we have 

]~ > /1 ,  T~ > To, x~, > l'2 > zto (70) > 0. 

For  sufficiently smooth initial  data, the front of  the compress ion wave in the given case will be twisted,  
exhibiting a tendency toward the appearance  of a s t rong discontinuity~ 

In the region 1< X2< X ~ as  follows f rom Fig. 2a, the re  exis t  only weak discontinuit ies;  the re fo re ,  i f  the 
degree  of the init ial  elongation X2(0) < X ~ then, even with discontinuous conditions, the front  of the wave will 
be washed out. 

In the region X2>X ~ i .e . ,  with sufficiently large  original  elongation deformat ions ,  as  follows f rom 
Fig. 2a, the re  a r i s e  elongation shock waves,  i r r e g a r d l e s s  of the smoothness  of the original  dis tr ibut ion of 

the  sought values .  In this case,  all the va lues  behind the shock wave will again be descr ibed  by formulas  
(4.1) for  ;t 2 >> 1. F r o m  this i t  follows that f2 < fl, T2 > To, X'o > Uo(To), and v2< 0. 

Dissipat ive phenomena (relaxat ion s t r e s s e s ,  heat t ransfer )  behind the front  of a shock wave introduce 
considerable  changes into elongation and compress ion  shock waves with loading. In both cases ,  relaxat ion of 
the s t r e s s e s  leads to a change in the p a r a m e t e r  ;t2 (with compress ion ,  ;t2 i n c r e a s e s  and, with elongation, 
dec reases ) .  In the case  of a compress ion  shock wave, this  fall in the intensi ty continues r ight  up to ; t2--1; in 
this case,  the compress ion  shock wave is  re ta ined.  In the case of an elongation shock wave, such a fall in the 
intensi ty  with the retent ion of a s trong discontinuity exis ts  only up to the moment  of t ime t , ,  when ;t z(t. ) 
becomes equal to ;t ~ For  t > t . ,  X2< ;to and the shock wave will be washed out due to instabil i ty.  Thus,  in 
dist inction f rom a compress ion  shock wave, an elongation shock wave exis ts  only for  a finite t ime t , ,  then 
becoming unstable.  

Taking account  of l a t e ra l  heat  t r ans f e r ,  lowering the t empera tu re  T 2 behind the shock wave br ings  
about an increase  (in compar ison  with adiabat ic  deformation) in the re laxat ion t ime and, as  a resu l t  of this,  
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somewhat  s lows down the course  of  the re laxa t ion  p r o c e s s e s .  Neve r the l e s s ,  the qual i ta t ive p ic ture  for both 
types  of loading shock waves  under  cons idera l ion  rernaius  valid.  

As  follows f r o m  (4.1), a l l  the va lues  a t  the shock wave a r e  complete ly  de te rmined  by the dependence 
X 2(t). This  dependence i s  found, as  i s  well  known, f r o m  the solution of  the complete  nonl inear  boundary-value  
p r o b l e m  in the region behind the shock wave.  If ,  behind the front  of the shock wave,  d iss ipa t ive  phenomena 
can be neglected,  this p r o b l e m  i s  made e a s i e r .  Fo r  example ,  fo rmulas  (4.1) yie ld  an exact  solution of the 
p rob l em of the pulsed c o m p r e s s i o n  of a semibounded e las t ic  rod  (h 2 = const).  

Le t  us now cons ide r  unloading waves ,  propagat ing  over  a homogeneous  loaded rod  re laxing  under  i s o -  
t h e r m a l  condi~:ions. 

In a pure ly  e l a s t i c  case  (00--*~ or  fl-~r X 2 = I ,  while X l, fl, and T l a r e  known quant i t ies ,  v t=  0, the 
si tuation is  i l l u s t r a t ed  in Fig.  2a ' ,  where ,  in the in te rva l  1<  X 1< X m ,  t he re  exis t  unloading shock waves  of an 
elongated sample .  The  re la t ionsh ips  a t  the shock wave have the fo rm 

/~ = Z~.q, r~--- T~{l - - ? ( &  --  l) ,4q}, 
(4.2) 

/ 

3 n ( ~ , i _ _ l ) ,  L'~ ~ XO )'i 

We note that,  accord ing  to (4.2), we have T2< T t, I t  can be shown that  this drop in the t e m p e r a t u r e  i s  
l e s s  than for  unloading under  i s en t rop ic  conditions. 

Re la t ionsh ips  (4.2) const i tute an exact  solution of the p rob lem for  the adiabat ic  unloading of an e las t ic  
rod,  i .e . ,  they d e s c r i b e  the d is t r ibut ion  of the sought va lues  a lso  behind the shock  wave.  

Taking account  of  re laxa t ion  phenomena can qual i ta t ively change the p ic ture  of all  the dis t r ibut ions 
behind a shock wave.  In the p r e s e n t  case ,  as  before ,  ft = const,  T I=  const, and v l=0 ;  however ,  the value of 
h l(t) i s  de te r rmned  f rom the re laxa t ion  equation 

d& _L Z,~ 0.,) O. ~ (0) = ~o. (4,3) 
dt 600 (T1) 

This  c i r c u m s t a n c e  leads  to a s i tuat ion in which, behind the shock front,  some value of the deformat ion  
is  fo rmed ,  X2{t)< X l(t), which i s  de t e rmined  f r o m  a solution of the complete  nonlinear dynamic p rob lem as  a 
whole. F o r  X t< ~ m,  the re la t ionsh ips  a t  the shock wave a r e  desc r ibed  by the overa l l  fo rmulas  (3.3)-(3.6), 
taking account  of v l = 0. 

In the case  where  x'0(X~)00L-l>>l (L is  the length of the rod  in the deformed state) ,  i . e . ,  the c h a r a c t e r i s -  
t ic  t ime  of the p ropaga t ion  of a loading shock wave over  the rod is  l e s s  than the re laxat ion  t ime ,  we can 
wri te  out the p r inc ipa l  t e r m s  of the a sympto t i c  solution behind the shock wave: 

~(x. t) ~ L., :: 1. ~(x .  t) ~ ~.. = O, v(x .  t) ~-, v.,_ (t), (4.4) 

in which the va lues  of  f2, T~., vz, and xt0, sa t i s fy  (4.2) with Xl(t) de te rmined  f r o m  (4.3); for f(x, t) we will obtain 
the Cauchy p r o b l e m  

having the solution 

~f ~(t" ;'~ (4.5) ot - "- )7.,. == 0"![,-=x,(,~ :::/.,_(t) ..... /l&(t), 

t 

! = ! , ; t ,  {1-1 (x - a (t))}, a ( 0  = j" v~ (~)d~-, t(t)  := 3:o (t)  - -  4 0 .  
O 

(4.6) 

When x'0(X~)00L-l~ 1, fo rmulas  (4.4)-(4.6) a r e  unsuitable and we mus t  turn  to a numer ica l  solution of the 
p r o b l e m  as  a whole.  The mos t  impor tan t  fact  in the p r e sen t  case i s  that a zone of compres s ion  may  a r i s e  in 
the re laxing  rod  behind an  unloading shock wave.  In actual i ty ,  i f  i t  i s  pos tula ted  that, behind the shock wave,  

d].'dt ---- O/.'Ot + vO/.Ox > O, 

then f r o m  the f i r s t  equation of (1.1) it follows that,  behind the shock wave,  8v/Sx< 0. The la t t e r  can lead to a 
s i tuat ion in which Xz< 1, ~2< 0, i .e . ,  in some region behind the shock wave there  may be re laxat ion of an 
inhomogeneous c o m p r e s s e d  ma te r i a l .  
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We note that the formulas  given above, descr ib ing  unloading shock waves,  a re  valid only i f  k~ Xm (see 
Fig.  2a').  In the con t ra ry  case ,  where k~ at the s t a r t  of the unloading p roces s ,  shock waves will not 
exist ,  and only in a cer ta in  t ime a f t e r  the s t a r t  of the unloading p roces s ,  in a medium with a sufficiently small  
re laxat ion t ime (or for  a ve ry  long rod), will the weak wave ar i s ing  at  the s t a r t  go over  into a shock wave, 
whose intensi ty will than fall fu r the r  with t ime. 
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D I S P E R S I O N  O F  T H E  V E L O C I T Y  A N D  S C A T T E R I N G  

O F  U L T R A S O N I C  W A V E S  IN C O M P O S I T E  

M A T E R I A L S  

A .  A .  U s o v  a n d  T .  D.  S h e r m e r g o r  UDC 534.514 

The sca t te r ing  of waves at  the inhomogenei t ies  of a medium can be calculated by var ious  methods.  An 
analysis  of the most  frequently used approximat ions  was made in [1, 2]. The sca t te r ing  coefficient of an u l t r a -  
sonic wave in composi t i te  ma te r i a l s  was calculated in [3-6]. In [3], the smal lness  of one of the components 
was assumed,  while, in [6], only the asymptote of long and shor t  waves were  calculated. An a t tempt  at the 
calculation of the sca t te r ing  coefficient  of longitudinal and t r a n s v e r s e  u l t rasonic  waves over  the whole range 
of  wavelengths was made in [4, 5]. The calculat ion was made under the approximation of  taking account of 
pa i rwise  cor re la t ions  between the moduli of e las t ic i ty  and the density. In [4], the calculat ions were made 
using a Gaussian dis t r ibut ion for  the coordinate par t s  of the binary cor re la t ion  functions, which does not 
re la te  to composite ma te r i a l s ,  and, in [5], the explici t  fo rm of a function enabling a t ransi t ion f rom asymptote 
of  long waves to a shor t -wave asymptote  is  not given. In addition, nei ther  of the above-c i ted  pieces  of work 
took into considerat ion the dis tr ibut ion of  the veloci ty  of the propagating wave. 

A calculation of the sca t te r ing  coefficient  and the dispers ion of the veloci ty  of longitudinal waves over  
the whole range of  wavelengths,  with a r b i t r a r y  concentrat ions of the components ,  is given below. 

w 1. We r e no rma l i ze  the equations of  motion 'using a method developed in [7-9]: 

Luu Z --- 0, Ltz --~ V~i~z,~V,, ~- pr 

where  u is  the vec to r  of the displacement;  •iklm is the tensor  of the moduli of e las t ic i ty ;  p is  the density of 
the medium; co is  the cyclic frequency.  
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